تنظیم و کاربرد الگوریتم جنگل تصادفی در ارزیابی ژنومی
Authors
Abstract:
One of the most important issues in genomic selection is using a decent method for estimating marker effects and genomic evaluation. Recently, machine learning algorithms which are members of non-parametric and non-linear methods have been extended to genomic evaluation. One of these methods is Random Forest (RF) on which this research was focused. Important parameters in RF algorithm are the number of SNPs selected randomly at each tree node (mtry), the number of trees to grow` (ntree) and the minimum size of terminal nodes of trees (node size) which need to be pre-defined before analyses and for them the model should be tuned. A genome comprised of five chromosomes, one Morgan each, on which 10000 bi-allelic SNP were arrayed was simulated and the efficiency of different combinations of mtry, ntree and node size was tested and the best combination was selected based on comparison of accuracy of predicted genomic value as well as OOB error estimates. For the simulated data in the current study the least OOB error as well as the maximum prediction accuracy was related to a model with 6000 mtry, 1000 ntree and 5 node size. Other combinations did not increase the accuracy of prediction while led to an increase in time of analyses for those which used more trees. Since the accuracy of prediction is a function of mtry, ntree and node size, in genomic evaluation, different combinations of these parameters should be used and the combination which caused the maximum prediction accuracy should be used for genomic evaluation.
similar resources
تنظیم و کاربرد الگوریتم جنگل تصادفی در ارزیابی ژنومی
یکی از مباحث مهم در انتخاب ژنومی، استفاده از روشی مناسب برای برآورد اثر نشانگرها و ارزیابی ژنومی است. اخیراً روشهای یادگیری ماشین1 که جزو روشهای ناپارامتری غیرخطی هستند وارد ارزیابی ژنومی شدهاند. یکی از این روشها الگوریتم جنگل تصادفی2 است که این تحقیق روی نحوه تنظیم این روش متمرکز شده است. پارامترهای مهم در الگوریتم جنگل تصادفی به ترتیب اهمیت، تعداد متغیر انتخاب شده در هر گره درخت3، تعداد در...
full textاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
full textاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
full textارزیابی صحت پیشبینی ژنومی در معماریهای مختلف ژنومی صفات کمی و آستانهای با جانهی دادههای ژنومی شبیهسازیشده، توسط روش جنگل تصادفی
Genomic selection is a promising challenge for discovering genetic variants influencing quantitative and threshold traits for improving the genetic gain and accuracy of genomic prediction in animal breeding. Since a proportion of genotypes are generally uncalled, therefore, prediction of genomic accuracy requires imputation of missing genotypes. The objectives of this study were (1) to quantify...
full textآزمون عملکرد الگوریتم جنگل های تصادفی و الگوریتم شبکه عصبی عمیق در استراتژی آربیتراژ آماری
در این تحقیق به آنالیز اثر بخشی الگوریتم جنگلهای تصادفی در زمینه آربیتراژ آماری پرداخته شده است، همچنین برای سنجش عملکرد الگوریتم جنگلهای تصادفی در زمینه آربیتراژ آماری نسبت به دیگر مدلهای ارائه شده در پژوهشهای پیشین، مقایسه نتایج بدست آمده از کاربرد این الگوریتم با الگوریتم شبکههای عصبی عمیق انجام شده است. مدلهای مورد نظر با اطلاعات مربوط به قیمت سهام آموزش داده شده و خروجی بدست آمده از ...
full textپیش بینی روند قیمت در بازار سهام با استفاده از الگوریتم جنگل تصادفی
فعالان بورس درصدد دستیابی و به کارگیری روشهایی هستند تا بتوانند با پیشبینی آتی قیمت سهام، سود سرمایه خود را افزایش دهند .بنابراین، ضروری به نظر میرسد که روشهای مناسب، صحیح و متکی به اصول علمی در تعیین قیمت آینده سهام فرآروی افراد سرمایهگذار قرار گیرد. تاکنون روشهای مختلفی جهت نیل به این هدف معرفی شدهاند که اغلب روشهای آماری و هوش مصنوعی هستند. در پژوهش حاضر با استفاده از رویکرد جنگل تصا...
full textMy Resources
Journal title
volume 7 issue 13
pages 185- 178
publication date 2016-08
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023